فیزیک طرح مفاهیم و قوانینی است که ما را در درک جهان یاری میدهند، قوانین فیزیک ساخته ذهن بشر و تابع تمام محدودیتهای بشرند. این قوانین الزاما ثابت تغییر ناپذیر یا برای تمام زمانها خوب نیستند و طبیعت نیز ملزم به پیروی از آنها نیست.
قانون فیزیکی
یک قانون فیزیکی بیانی است معمولا به زبان فشرده و دقیق ریاضی از رابطه بین کمیات فیزیک که با تکرار آزمایش بدست میآید و از یک نظم دائمی در رفتار دنیای فیزیک حکایت دارد.
یک قانون فیزیکی خوب دارای بیشترین عمومیت ، سادگی و دقت ممکن است که ملاک نهایی یک قانون فیزیکی موفق ، چگونگی دقت آن در پیشگویی نتایج حاصل از آزمایشهاست.
به عنوان مثال چنان به صحت قانون گرانش عمومی اطمینان داریم که با قاطعیت تقریبا کامل میگوییم که هر گاه شتاب گرانش در سطح مریخ اندازه گیری شود، نتیجه خیلی نزدیک 3.6 متر بر مجذور ثانیه خواهد بود. میگوییم با قطعیت تقریبا کامل ، زیرا هنگامی که از یک قانون به گستره اعتبار آزمایش نشده آن برون یابی میکنیم ممکن است نتایجی را که با آزمایشهای بعدی ناسازگارند پیشگویی کند.
تکامل فیزیک
با رشد فیزیک بعضی نظریهها و قوانین پیشین نسبت به پدیدههایی که این نظریهها و قوانین برای آنها آزمایش نشده بودند ، نارسا تشخیص داده شدند.این نظریهها و قوانین بوسیله نظریهها و قوانین عامتر و فراگیرندهتری که پدیدههای نوین را به همان خوبی پدیدههای قدیمی توصیف میکردند، کنار گذاشته شدند.
فیزیک کلاسیک درباره اجسامی با اندازههای معمولی که با سرعتهای معمولی حرکت میکنند، گفتگو میکند و مکانیک نیوتنی و الکترومغناطیس (از جمله نظریه نور) را در بر میگیرد.
برای اجسامی که سرعت آنها نزدیک سرعت نور است فیزیک کلاسیک جای خود را به فیزیک نسبیت میدهد.
در مورد اجسامی که ابعاد آنها تقریبا آنگسترومی ، ابعاد اتمی است (تقریبا اندازه یک اتم) باید فیزیک کوانتومی جایگزین فیزیک کلاسیک شود.
برای ابعاد زیر اتمی و سرعتهای نزدیک به سرعت نور ، سرعت فرین نسبیتی تنها فیزیک کوانتومی نسبیتی میتواند مناسب باشد.
حد و مرز این نظریههای فیزیکی مشخص نیست، در حقیقت نظریهها باهم تلاقی میکنند.
فیزیک کوانتومی نسبیتی فرا گیرنده ترین و کامل ترین ساختار نظری فیزیک روز است. در ابعاد حدود 14-10 متر (تقریبا به اندازه هسته اتم یا یک فرمی) پدیدههای مختلف و گیج کنندهای ظاهر میشوند. در حال حاضر این پدیدهها تا حدودی درک شدهاند.
ساختارهای ریز
درک ما از ساختار اتمی و هستهای بر دو مفهوم بر جسته فیزیک نوین یعنی نظریه نسبیت و نظریه کوانتومی مبتنی است. این نظریهها هر دو در آغاز این قرن زمانی که برای نخستین بار با پیشرفت فنون آزمایش امکان مطالعه پدیدههایی با ابعاد کوچک و با سرعت زیاد فراهم شد پایه گذاری شدند.
ابزاربررسی فیزیک نوین
پس از مرور برخی جنبههای مهم فیزیک کلاسیک نظریههای نسبیت و کوانتومی را دنبال میکنیم و آنها را برای تحلیل ساختار اتمی و هستهای بکار میبریم. وضعیتهایی را میبینیم که در آنها بعضی مفاهیم آشنای فیزیک قابل استفاده نیستند، وضعیتهایی که در آنها فیزیک کلاسیک غلط محض است. آیا این بدین معنی است که تمام اوقات و انرژیهایی که برای مطالعه فیزیک کلاسیک مقدماتی صرف شده به هدر رفته است و باید آنها را هم با نسبیت و نظریههای کوانتومی آغاز کرد؟ نه هرگز چنین نیست! نتایج تمام آزمایشها ، هر چند دور از تجربه عادی ما ، سرانجام باید بر حسب عبارتهای کلاسیکی یعنی بر حسب مفاهیم کلاسیکی اندازه حرکت ، انرژی ، مکان و زمان بیان شوند. به علاوه بسیاری از مفاهیم و قوانین فیزیک کلاسیک به فیزیک نوین منتقل شدهاند.
سوالات تازه در برنامه فیزیک
فیزیک نوین چیست؟
فیزیک نوین با فیزیک کلاسیک چه تفاوتی دارد و در چه مواردی با آن در تشابه است؟
چه مفاهیم اساسی از فیزیک کلاسیک به فیزیک قرن بیستم که با ذرات خیلی کوچک و خیلی سریع فیزیک کوانتومی نسبیتی سر و کار دارد انتقال یافتهاند؟
کدام یک از مفاهیم فیزیک کلاسیک بدون تغییر میمانند و کدام یک باید اصلاح یا تعویض شوند؟
وقتی که صحبت از مفهوم انرژی به میان میآید، نمونههای آشنای انرژی مثل انرژی گرمایی ، نور و یا انرژی مکانیکی و الکتریکی در شهودمان مرور میشود. اگر ما انرژی هستهای و امکاناتی که این انرژی در اختیارش قرار میدهد، آشنا شویم، شیفته آن خواهیم شد.
آیا میدانید که
انرژی گرمایی تولید شده از واکنشهای هستهای در مقایسه با گرمای حاصل از سوختن زغال سنگ در چه مرتبه بزرگی قرار دارد؟
منابع تولید انرژی هستهای که بر اثر سیلابها و رودخانه از صخره شسته شده و به بستر دریا میرود، چقدر برق میتواند تولید کند؟
کشورهایی که بیشترین استفاده را از انرژی هستهای را میبرند، کدامند؟ و ... .
نحوه آزاد شدن انرژی هستهای
میدانیم که هسته از پروتون (با بار مثبت) و نوترون (بدون بار الکتریکی) تشکیل شده است. بنابراین بار الکتریکی آن مثبت است. اگر بتوانیم هسته را به طریقی به دو تکه تقسیم کنیم، تکهها در اثر نیروی دافعه الکتریکی خیلی سریع از هم فاصله گرفته و انرژی جنبشی فوق العادهای پیدا میکنند. در کنار این تکهها ذرات دیگری مثل نوترون و اشعههای گاما و بتا نیز تولید میشود. انرژی جنبشی تکهها و انرژی ذرات و پرتوهای بوجود آمده ، در اثر برهمکنش ذرات با مواد اطراف ، سرانجام به انرژی گرمایی تبدیل میشود. مثلا در واکنش هستهای که در طی آن 235U به دو تکه تبدیل میشود، انرژی کلی معادل با 200MeV را آزاد میکند. این مقدار انرژی میتواند حدود 20 میلیارد کیلوگالری گرما را در ازای هر کیلوگرم سوخت تولید کند. این مقدار گرما 2800000 بار برگتر از حدود 7000 کیلوگالری گرمایی است که از سوختن هر کیلوگرم زغال سنگ حاصل میشود.
گرمای حاصل از واکنش هستهای در محیط راکتور هستهای تولید و پرداخته میشود. بعبارتی در طی مراحلی در راکتور این گرما پس از مهارشدن انرژی آزاد شده واکنش هستهای تولید و پس از خنک سازی کافی با آهنگ مناسبی به خارج منتقل میشود. گرمای حاصله آبی را که در مرحله خنک سازی بعنوان خنک کننده بکار میرود را به بخار آب تبدیل میکند. بخار آب تولید شده ، همانند آنچه در تولید برق از زعال سنگ ، نفت یا گاز متداول است، بسوی توربین فرستاده میشود تا با راه اندازی مولد ، توان الکتریکی مورد نیاز را تولید کند. در واقع ، راکتور همراه با مولد بخار ، جانشین دیگ بخار در نیروگاههای معمولی شده است.
سوخت راکتورهای هستهای
مادهای که به عنوان سوخت در راکتورهای هستهای مورد استفاده قرار میگیرد باید شکاف پذیر باشد یا به طریقی شکاف پذیر شود.235U شکاف پذیر است ولی اکثر هستههای اورانیوم در سوخت از انواع 238U است. این اورانیوم بر اثر واکنشهایی که به ترتیب با تولید پرتوهای گاما و بتا به 239Pu تبدیل میشود. پلوتونیوم هم مثل 235U شکافت پذیر است. به علت پلوتونیوم اضافی که در سطح جهان وجود دارد نخستین مخلوطهای مورد استفاده آنهایی هستند که مصرف در آنها منحصر به پلوتونیوم است.
میزان اورانیومی که از صخرهها شسته میشود و از طریق رودخانهها به دریا حمل میشود، به اندازهای است که میتواند 25 برابر کل مصرف برق کنونی جهان را تأمین کند. با استفاده از این نوع موضوع ، راکتورهای زایندهای که بر اساس استخراج اورانیوم از آب دریاها راه اندازی شوند قادر خواهند بود تمام انرژی مورد نیاز بشر را برای همیشه تأمین کنند، بی آنکه قیمت برق به علت هزینه سوخت خام آن حتی به اندازه یک درصد هم افزایش یابد.
مزیتهای انرژی هستهای بر سایر انرژیها
بر خلاف آنچه که رسانههای گروهی در مورد خطرات مربوط به حوادث راکتورها و دفن پسماندهای پرتوزا مطرح میکند از نظر آماری مرگ ناشی ازخطرات تکنولوژی هستهای از 1 درصد مرگهای ناشی از سوختن زغال سنگ جهت تولید برق کمتر است. در سرتاسر جهان تعداد نیروگاههای هستهای فعال بیش از 419 میباشد که قادر به تولید بیش از 322 هزار مگاوات توان الکتریکی هستند. بالای 70 درصد این نیروگاهها در کشور فرانسه و بالای 20 درصد آنها در کشور آمریکا قرار دارد.
آنچه خداوند در طبیعت به ودیعه نهاده است، اگر بصورت صحیح و در جهت درست مورد استفاده قرار گیرد، وسایل رفاه و آسایش بیشتر را تأمین خواهد کرد. اما اگر این امکانات خدادادی در جهت نادرست و نامشروع مورد بهره برداری قرار گیرند، نه تنها وسیلهای برای آرامش و آسایش او نخواهد بود، بلکه بلای جان او شده و وسیلهای برای تهدید هستی او تبدیل خواهد شد. یکی از این منابع طبیعی سنگ معدن اورانیوم است که اگر بصورت درست مورد استفاده قرار گیرد، بسیار مفید بوده و به تعداد فوقالعادهای میتواند انرژی برق مورد استفاده بشر را تأمین کند، اما متأسفانه استفادههای نادرست سبب شده است که این عنصر خدادادی ماده اولیه سلاحهای مرگبار باشد که بمب اتمی یکی از این نمونهها میباشد.
تاریخچه
استفاده از انرژی هستهای به مقیاس زیاد بین سالهای 1939 تا 1945 میلادی در ایالات متحده آمریکا انجام شد. این امر زیر فشار جنگ جهانی دوم ، بصورت نتیجه تلاشهای مشترک تعداد زیادی از دانشمندان و مهندسان صورت گرفت. دست اندرکارانی که در ایالات متحده به این کار اشتغال داشتند، آمریکایی ، بریتانیایی و پناهندگان اروپایی کشورهایی بودند که زیر سلطه فاشیسم قرار داشتند. تلاش آنان این بود که قبل از آلمانیها به یک سلاح هستهای دست پیدا کنند ، این سلاح هستهای همان بمب اتمی بود.
بمب اتمی چیست؟
بمب اتمی در اصل یک راکتور هستهای کنترل نشده است که در آن یک واکنش هستهای بسیار وسیع در مدت یک میلیونیم ثانیه در سراسر ماده صورت میگیرد. بنابراین ، این واکنش با راکتور هستهای کنترل شده تفاوت دارد. در راکتور هستهای کنترل شده ، شرایط به گونهای سامان یافته است که انرژی حاصل از شکافت بسیار کندتر و اساسا با سرعت ثابت رها میشود. در این راکتور ، ماده شکافت پذیر به گونهای با مواد دیگر آمیخته میشود که بطور متوسط ، فقط یک نوترون گسیل یافته از عمل شکافت موجب شکافت هسته دیگر میشود، و واکنش زنجیری به این طریق فقط تداوم خود را حفظ میکند. اما در یک بمب اتمی ، ماده شکافتپذیر خالص است، یعنی یک متعادل کننده آمیخته نیست و طراحی آن به گونهای است که تقریبا تمام نوترونهای گسیل یافته از هر شکافت میتواند در هستههای دیگر شکافت ایجاد کند.
عناصر اصلی سازنده
بمب اتمی در طول جنگ جهانی دوم از راکتورهای هستهای برای تولید مواد خام نوعی بمب هستهای ، یعنی برای ساختن 239Pu از 235U استفاده میشد. هر دو این عناصر میتوانند یک واکنش زنجیری کنترل نشده سریع ایجاد کنند. بمبهای هستهای یا اتمی از هر دو این مواد ساخته میشوند. تنها یک بمب اتمی که از 235U ساخته شده بود، شهر هیروشیما در ژاپن را در 6 آگوست سال 1945 میلادی ویران کرد. بمب دیگری که از 239U در ساختن آن بکار برده شده بود، سه روز بعد شهر ناکازاکی کشور ژاپن را با خاک یکسان ساخت.
عواقب ناشی از بمب اتمی
یک مسئله فرعی ، ریزشهای رادیواکتیو حاصل از آزمایش بمبهای اتمی است. در انفجار بمب اتمی مقدار قابل توجهی محصولات شکافت رادیواکتیو پراکنده میشوند. این مواد بوسیله باد از یک بخش جهان به نقاط دیگر آن منتقل میشوند و بوسیله باران و برف از جو زمین فرو میریزند. بعضی از این مواد رادیواکتیو طول عمر زیادی دارند، لذا بوسیله مواد غذایی گیاهی جذب شده و بوسیله مردم و حیوانات خورده میشوند. معلوم شده است که اینگونه مواد رادیواکتیو آثار ژنتیکی و همچنین آثار جسمانی زیان آوری دارند. یکی از فراوانترین محصولات حاصل از شکافت 235U یا 239Pu ، که از لحاظ شیمیایی شبیه 4020Ga است. بنابراین وقتی که 90Sr حاصل از ریزشهای رادیواکتیو وارد بدن میشود، به ماده استخوانی بدن راه مییابد. این عنصر میتواند با گسیل ذرات بتا با انرژی 0.54 میلیون الکترون ولت (نیم عمر 28 سال) نابود میشوند، که میتواند به سلولها آسیب رسانده و موجب بروز انواع بیماریها از قبیل تومور استخوان ، لوکمیا و ... ، بخصوص در کودکان در حال رشد ، میشود.